
Toward Black-Box Detection of Logic Flaws in Web
Applications

Giancarlo Pellegrino
EURECOM, France

SAP Product Security Research, France
giancarlo.pellegrino@eurecom.fr

Davide Balzarotti
EURECOM, France

davide.balzarotti@eurecom.fr

Abstract—Web applications play a very important role in
many critical areas, including online banking, health care, and
personal communication. This, combined with the limited security
training of many web developers, makes web applications one of
the most common targets for attackers.

In the past, researchers have proposed a large number of
white- and black-box techniques to test web applications for the
presence of several classes of vulnerabilities. However, traditional
approaches focus mostly on the detection of input validation flaws,
such as SQL injection and cross-site scripting. Unfortunately,
logic vulnerabilities specific to particular applications remain
outside the scope of most of the existing tools and still need
to be discovered by manual inspection.

In this paper we propose a novel black-box technique to detect
logic vulnerabilities in web applications. Our approach is based
on the automatic identification of a number of behavioral patterns
starting from few network traces in which users interact with
a certain application. Based on the extracted model, we then
generate targeted test cases following a number of common attack
scenarios.

We applied our prototype to seven real world E-commerce
web applications, discovering ten very severe and previously-
unknown logic vulnerabilities.

I. INTRODUCTION

Web applications play a very important role in many
critical areas, and are currently trusted by billions of users to
perform financial transactions, store personal information, and
communicate with their friends. Unfortunately, this makes web
applications one of the primary targets for attackers interested
in a wide range of malicious activities.

To mitigate the existing threats, researchers have proposed
a large number of techniques to automatically test web appli-
cations for the presence of several classes of vulnerabilities.
Existing solutions span from black-box fuzzers and pentesting

tools to static analysis systems that parse the source code of
an application looking for well-defined vulnerability patterns.
However, traditional approaches focus mostly on the detection
of input validation flaws, such as SQL injection and cross-site
scripting. To date, more subtle vulnerabilities specific to the
logic of a particular application are still discovered by manual
inspection [33].

Logic vulnerabilities still lack a formal definition, but,
in general, they are often the consequence of an insufficient
validation of the business process of a web application. The
resulting violations may involve both the control plane (i.e., the
navigation between different pages) and the data plane (i.e., the
data flow that links together parameters of different pages). In
the first case, the root cause is the fact that the application
fails to properly enforce the sequence of actions performed
by the user. For example, an application may not require a
user to log in as administrator to change the database settings
(authentication bypass), or it may not check that all the steps
in the checkout process of a shopping cart are executed in
the right order. Logic errors involving the data flow of the
application are caused instead by failing to enforce that the
user cannot tamper with certain values that propagate between
different HTTP requests. As a result, an attacker can try to
replay expired authentication tokens, or mix together the values
obtained by running several parallel sessions of the same web
application.

Formal specifications describing the evolution of the inter-
nal state and of the expected user behavior are almost never
available for web applications. This lack of documentation
makes it very hard to find logic vulnerabilities. For example,
while being able to add several times the same product to a
shopping cart is a common feature, being able to add several
times the same discount code is likely a logic vulnerability.
A human can easily understand the difference between these
two scenarios, but for an automated scanner without the proper
application model it is very hard to tell the two behaviors apart.

Only recently the research community has started investi-
gating automated approaches to detect logic vulnerabilities [9,
18, 21]. Unfortunately, the existing solutions have serious
scalability problems that limit their applicability to small
applications. Moreover, the source code of the application is
often required in order to extract a proper model to guide the
test case generation. As a result, to date the impact of available
automated tools has been quite limited.

As an alternative approach, researchers have recently re-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23021


sorted to manual analysis to expose several severe logic flaws
in real world commercial applications [34, 35] resulting, for
instance, in the ability to shop online for free. Following the
step of these previous works, in this paper we show that
it is possible to automatically infer an approximate model
of a web application starting from a few network traces in
which a user “stimulates” a certain functionality. Our goal
is not to automatically reconstruct an accurate model of the
application or of its protocol (several works already exist in this
direction [14, 15]) but instead to empirically show that even
a simple representation of the application logic is sufficient to
perform automated reasoning and to generate test cases that
are likely to expose the presence of logic vulnerabilities.

In this paper we propose a technique that analyzes network
traces in which users interact with a certain application’s
functionality (e.g., a shopping cart). We then apply a set of
heuristics to identify behavioral patterns that are likely related
to the underlying application logic. For example, sequences of
operations always performed in the same order, values that are
generated by the server and then re-used in the following user
requests, or actions that are never performed more than once in
the same session. These candidate behaviors are then verified
by executing very specific test cases generated according to
a number of attack patterns. It is important to note that our
approach is not a fuzzer, and both the trace analysis and the
test case generation steps are performed offline. In other words,
they do not require to probe the application or generate any
additional interaction and network traffic.

While our approach is application-agnostic, the choice of
the attack patterns reflects a particular class of logic flaws
and application domain — and in our case were customized
for E-commerce applications. In particular, we applied our
prototype to seven large shopping cart applications adopted
by millions of online stores. The prototype discovered ten
previously-unknown logic flaws among which five of them
allow an attacker to pay less or even shop for free.

In summary, this paper makes the following contributions:

1) We introduce a new black-box technique to test
applications for logic vulnerabilities;

2) We present the implementation of a tool based on our
technique and we show how the tool can be used to
test several real web applications, even with a very
limited knowledge and a small number of network
traces;

3) We discover ten previously-unknown vulnerabilities
in well-known and largely deployed web applications.
Most of these vulnerabilities have a very high impact
and would allow an attacker to buy online for free
from hundreds of thousands of online stores.

Structure of the paper. Section II presents the black-box
approach. Section III describes the experiments that we per-
formed and Section IV shows the results. Section V discusses
the limitations of our approach and Section VI presents related
work on detecting logic vulnerabilities. Finally, Section VII
concludes the paper.

II. APPROACH

The OWASP Testing Guide 3.0 [33] suggests a four-step
approach to test for logic flaws in a black-box setting. First, the
tester studies and understands the web application by playing
with it and reading all the available documentation. Second,
she prepares the information required to design the tests,
including the intended workflow and the data flow. Then she
proceeds with the design of the test cases, e.g., by reordering
steps or skip important operations. Finally, she sets up the
testing environment by creating test accounts, runs the tests,
and verifies the results.

Our approach aims at automating the previous steps in a
single black-box tool. First, starting from a list of network
traces containing HTTP conversations, our system infers an
application model and clusters resources related to the same
workflow “step” (Section II-A). Second, our technique an-
alyzes the model and extracts a set of behavioral patterns
(Section II-B) modeling both the workflow and data flow of
the application. Third, we apply a set of attack patterns to
automatically generate test cases (Section II-C). Finally, we
execute them against the web application (Section II-D), and
we use an oracle to verify whether the logic of the application
has been violated (Section II-E).

In the rest of the section we describe each phase in details
using E-commerce web applications as a running example.

A. Model Inference

The technique we present is passive and black-box. We do
not require any access to the application source code (both on
the client- and server-side), and we do not actively crawl the
application pages nor generate any traffic to probe its internal
state. Instead, we take as input a list of HTTP conversations.
These traces can be manually generated by the tester, or
collected by logging real user activity.

For simplicity, we consider only traces that exercise a
specific functionality of the web application. For example, if
the web application is a shopping cart, we use traces in which
users log in, add items into the cart, and check out to buy the
products. Nothing prevents the tester from generating traces
that also contain other functionalities, such as browsing the
online catalog or posting product reviews. However, focusing
only on one aspect of the business logic helps our system to
find the relevant operations with a minimum number of input
traces.

Web applications often involve multiple parties. For in-
stance, E-commerce web applications typically involve the
client, the store, and the payment service. However, the com-
munication between them is normally channeled through the
client and, therefore, we focus on this point to collect the
traces. In addition, it is useful to collect data from different de-
ployments of the same web application, to allow our inference
method to identify parameter values hard-coded in a certain
installation.

The first phase consists of building the model of the
application, called navigation graph. This is done in two steps:
resource abstraction, and resource clustering.

2



r1,1 r1,2
r1,4

r 2,1 r 2,2

r1,3

r 2,3

74.125.230.240 > 192.168.1.89
192.168.1.89 > 74.125.230.240
74.125.230.240 > 192.168.1.89

Resource
Abstraction

Resource
Clustering

r1,1

r1,2

r1,4

r2,1

r 2,2

r1,3

r2,3

I F

STRING

INT

Data flow
Patterns

Workflow
Patterns

 1) Model Inference

2) Behavioral Patterns

r1,1

r1,2

r1,4

r 2,1

r2,2

r1,3

r 2,3

I F

PChain 1

PChain 2

3) Test Cases Generation

Test Cases

4) Test Cases Execution

r1,1

r1,2

r1,4

r2,1

r 2,2

r1,3

r 2,3

I F

MWP

Rp

TrWP

St

TrWP

74.125.230.240 > 192.168.1.89
192.168.1.89 > 74.125.230.240
74.125.230.240 > 192.168.1.89

Execution

Oracle

Verdict:

Flaw found 
in test
1 and 2

r1,1 r1,2
r1,4

r 2,1 r 2,2

r1,3

r 2,3

r1,1

r1,2

r1,4

r 2,1

r2,2

r1,3

r 2,3

I F

r1,1

r1,2

r1,4

r 2,1

r 2,2

r1,3

r 2,3

I F

MWP

Rp

TrWP

St

TrWP

r1,2
r1,4

r 2,1 r2,2

r1,3

r 2,3

r1,1 r1,2
r1,4r1,3

r1,1 r1,2
r1,4r1,3

r1,1 r1,2
r1,4r1,3

r1,1

Fig. 1: Architecture of our approach.

1) Resource Abstraction

Input traces are sequences of pairs of HTTP requests and
responses. The first step of the inference phase consists of
creating a synthesis of the resources. Our approach currently
supports JSON data objects [17] and HTML pages. However,
it can be easily extended to other types such as SOAP
messages [36].

We call abstract HTML page the collection of (i) its URL,
(ii) the POST data, (iii) the anchors and forms contained in
the HTML code and their DOM paths, (iv) the URL in the
meta refresh tag, and, if any, (v) the HTTP redirection location
header. We call abstract JSON object a collection of (i) its
URL, (ii) the POST data, (iii) the pairs of value and path in
the object, and (iv) the HTML links if any HTML code is
contained. For example, Figure 2 shows the abstract resource
of the following JSON object:

{‘items’: {

‘item1’: [‘price’:19.9,‘tax’:1.6],

‘item2’: [ ... ]}}

From each abstract resource we extract a set of elements
corresponding to all possible parameters that appear in the
URLs, in the POST data, and in all the links. Each element
is characterized by a name, a value, a path, and an inferred
syntactic type. Our approach supports the integer type, decimal
type, URL type, email address type, word type (alphabeti-
cal strings e.g., “add”, “remove”, . . . ), string type, list type
(comma-separated values), and unknown type (i.e., everything
else). The type is associated to each element by inspecting the
values of the element. Obvious priority rules are applied in

items

item1

root

store.com/ajax.php?action=cart store.com/ajax.php?action=<word>

item2

items

root

item2

tax=1.6

price=19.9

item1

tax=<dec>

price=<dec>

Fig. 2: Resource abstraction and syntactic type inference of a
JSON data object

case of ambiguity – e.g., id=20 can be both a number and a
string, but being the first a subset of the second, it is considered
to be a number.

2) Resource Clustering

Modern web applications map application logic operations
to different resources. For instance, the operation of displaying
the shopping cart could involve an initial HTML page contain-
ing the skeleton of the web page and then use a number of
asynchronous AJAX requests to populate the page with the
list of items, tax, available vouchers, and so on. We cluster
these resources in three phases. First, we relate asynchronous
requests to the resource that originated them, i.e., synchronous
resource. Then we group together resources considering both

3



(a)

(b) login.php
do.php?
action=cart

do.php?
action=show

ajax.php?
action=cart

(c) r1 r 2 r 4r3

〈 r 2 〉

Fig. 3: (a) Application-level actions, (b) URLs requested, and
(c) abstract resources with list of originators

similarity and the originators. Third, we split a cluster if a
parameter of its resources encodes a command rather than
carrying a value.

During the first phase, we pre-process input traces to
identify AJAX requests. This can be done by checking the
“X-Requested-With” HTTP request header [32] or by detecting
JSON responses. After that, we associate each resource to its
originators. Figure 3 provides an example of this first phase.
In Figure 3.c we have the HTML page r1 followed by the
page r2. Then r2 requests r3 by using AJAX that enriches r2

with new HTML code, or new client-side scripts. The example
then ends with r4 that we assume to be caused by a link in r2

or added by r3. Figure 3.c also shows the list of originators
of each resource. r1, r2, and r4 have no originators, while r3

was originated by r2.

In the second phase, we cluster resources. In general, two
resources are grouped in the same cluster if they have the same
URL domain and path, the same GET/POST parameter names,
and, if any, the same redirection URL. When comparing
parameters we do not take into account their values, but only
their syntactic types. For example, the following three URLs
are equivalent:

store.com/do.php?action=add&id=3

store.com/do.php?action=add&id=7

store.com/do.php?action=show&id=3

We compare first synchronous resources as explained be-
fore, and then the asynchronous ones. Two asynchronous
resources are in the same cluster if they have the same URL
domain and path, GET/POST parameter names, redirection
URL, and the same originators.

During the last phase, we identify the parameters that are
encoding a command rather than transporting a value. For
each parameter we take the pages that have the same value as
that parameter. For example, the parameter action divides
the gray cluster of Figure 4.a in two sub-groups, one for the
cart value and one for the show value. We then compute
the page similarity between pages in the same sub-group and
between pages in different sub-groups. The comparison is done
by looking at the DOM path of HTML forms, their action
attribute (URL domain and parameter names), and the name
of the nested input elements. The function is applied to sub-
groups by calculating the percentage of pages that are similar.

(a)

(b)

login.php
do.php?

action=<word>
ajax.php?

action=<word>

login.php
do.php?
action=cart

ajax.php?
action=<word>

do.php?
action=show

Fig. 4: (a) Clusters after comparing all the resources (b) Clus-
ters after having identified parameters encoding a command

If the similarity inside the same sub-groups is high (more than
55%), and between different sub-groups is low (less than 45%),
then we assume the parameter is used to specify an operation
and we create a different node for each value. Otherwise we
leave the cluster unmodified. The result of this phase is shown
in Figure 4.b.

The navigation graph is a directed graph G = (C [
{I, F}, E) where C is the set of clusters, I the source node,
F the final node, and E the set of edges. We place the edge
(u, v) if there exists one input trace ⇡ in which a resource
r

0 2 u immediately precedes a resource r

00 2 v. Then, for
each rj at the beginning of each trace (i.e. ⇡ = hrj , . . .i), we
place the edge (I, u) where rj 2 u and for each rj at the end
of each trace, (i.e. ⇡ = h. . . , rji) we place the edge (u, F )
where rj 2 u. Finally, we associate to each node u the set of
all the elements for every r 2 u.

B. Behavioral Patterns

Behavioral patterns are workflow and dataflow patterns that
are likely related to the logic of the application. We divide
workflow patterns into Trace Patterns, that model what users
normally do in our input traces, and Model Patterns that model
what the navigation graph allows to be done. Finally, Data
Propagation Patterns model how data is propagated throughout
the navigation graph.

1) Trace Patterns

Trace patterns model the actions performed by the user in
the input traces. In particular, we focus on three patterns:

Singleton Nodes
A node is a singleton if it is never visited more than
once by any input trace. Some of the users may visit
these nodes, and some may not - but no one visits them
twice. For example, submitting a discount voucher can
be an operation observed in some of input traces but
none of them is submitting a voucher twice.

Multi-Step Operations
A Multi-Step Operation is a sequence of consecutive
nodes always visited in the same order. This is very
common in many functionalities in web applications.
For example, payment procedures or user registrations
often consist of a precise sequence of steps, and all

4



a

b

c

d

f

St

St

MWP

TrWP St

TrWP

e
MWP

Rp

RpRp

TrWP

MWP

Rp

TrWP

Fig. 5: Example of behavioral patterns using ⇡1 =
ha, b, a, c, d, e, f, ei and ⇡2 = ha, c, d, e, f, ei

traces going through those processes always execute
them in the same exact order.

Trace Waypoints
We use the term waypoint to describe nodes that play
an important role in the interaction between the user
and the application. In particular, trace waypoints are
those nodes that appear in all the input traces. For
example, if all our traces contain a purchase, then the
redirection to the payment website (e.g., PayPal) is a
trace waypoint.

2) Model Patterns

Model patterns model the sequences of actions that are
allowed according to the navigation graph:

Repeatable Operations
Nodes that are part of a loop in the navigation graph
are associated to operations that can potentially be
repeated multiple times.

Model Waypoints
Model waypoints are nodes that belong to every path
in the navigation graph that goes from the source node
to the final node. These nodes are not only visited in
all input traces, but there is no way in the navigation
graph to bypass them. By definition, every model
waypoint is also a trace waypoint but not vice versa.

Figure 5 shows an example to better describe the difference
between model and trace patterns. The example shows the be-
havioral patterns of a navigation graph extracted from two in-
put traces ⇡1 = ha, b, a, c, d, e, f, ei and ⇡2 = ha, c, d, e, f, ei.
The symbols St, TrWP, Rp, and MWP stand for, respectively,
singleton nodes, trace waypoints, repeatable nodes, and model
waypoints. The thick dotted line delimits the multi-step oper-
ation.

x=v
1
y=v

2

z=v
1

π
1

b

b

c

d

k=v
1

w=v
3

z=v
4
k=v

5

x=v
1
y=v

2

z=v
6
k=v

1

j=v
7 m=v

1

x y

z

a

b

d

c

k

w

j m

Clust. π
2

a

Parameters Parameters Clust. Parameters

Fig. 6: Propagation Chains: from traces to the navigation graph

3) Data Propagation Patterns

A propagation chain is a set of parameters with the same
value which is sent back and forth between the client and the
web application during the HTTP conversation. We say that
two parameters have the same value if there are some input
traces in which they hold the same value, and there are no
traces in which the values are different (since the user does not
perform the same actions in all the traces, a certain parameter
may not be present in all of them). We say that the chain is
client generated if the initial value is chosen by the user, and
server generated otherwise. A similar classification is used
by Wang et al. [34]. However, their notion is limited to single
input traces while ours is extended to traces of different lengths
and to the navigation graph.

We compute propagation chains in two steps. First, we
identify the propagation chain of each value within a trace.
Let us consider the example in Figure 6. Here, in the input
trace ⇡1, the parameter x has the same value of z and of
k. In trace ⇡2, the parameter x is still equal to k, but it is
now different from z. Moreover, the same value matches the
parameter m. Second, by comparing the chains of traces, we
remove contradictions reaching the result shown in the right
side of Figure 6.

C. Test Case Generation

In this section we describe the generation of test cases. This
is done by adopting a number of attack patterns that model how
an attacker can use the application in an unconventional way.
In particular, we focus on a set of actions an attacker could
perform: repeating operations, skipping operations, subverting
the order of operations, and mixing parameter values across
user sessions. For each action we designed a pattern. These
patterns are presented in Figure 7 and are based on the
navigation graph of Figure 5. We enriched Figure 7 with
numbers for showing the order in which the nodes are visited.
For simplicity, we are omitting the source node I and the final
node F , respectively connected to a and e.

It is important to note that, while the approach presented
in this paper is generic, the choice of the attack patterns needs
to reflect a particular class of logic flaws (in our case, the
subversion of either the control or data-flow of the application).
Other types of logic vulnerabilities, such as authentication
bypass, may require the use of other patterns (e.g., randomly
access administration pages) that could be added to our system

5



a

b

c

d

e

1

2
5

6

7

3

4

a

b

c

d

1

23

4

a

b

c

d

e

5

67

8

9

par=x

Multiple Execution
of Repeatable Singletons

Breaking Server-Generated 
Propagation Chains

(a) (b) (c) (e)

a

b

d

1

2
3

5

Waypoints Detour

a

b

d

e

6

7

8

9

par
1
=x

par
2
=y

a

b

c

d

e

1

23

4 5

6

Breaking Multi-Step 
Operations

a

b

c

d

e

1

23

4

(d)

c''

c'
4

f

8

9
f

7

8
f

10

11
f

5

6
f

10

11

Fig. 7: Test case generation patterns

but that are outside the scope of our paper. However, the use of
custom techniques to detect certain vulnerabilities is common
to many other tools and approaches - e.g., a technique designed
to find SQL injections cannot be used out of the box to detect
other types of input sanitization vulnerabilities.

1) Multiple Execution of Repeatable Singletons

This pattern models an attacker that tries to execute an
operation several times. If the model has a node that is
repeatable and singleton, it means that even though there is
a way to repeat an operation multiple times, this was never
observed in our input traces. Therefore, the attacker tries to
visit it twice.

Figure 7.a shows the steps of the test case. We select an
input trace that visits b (e.g., ha, b, a, c, d, e, f, ei), a repeatable
and singleton node. Then we split it into two parts at the node
after the singleton (e.g., ha, bi and ha, c, d, e, f, ei). We call
these two parts prefix and suffix. Second, we find the shortest
loop from the singleton node to itself (e.g., hb, a, bi). Finally,
the test case is the concatenation of the prefix, the loop without
the first node, and the suffix.

2) Breaking Multi-Step Operations

This pattern models an attacker that breaks multi-step
operations. For example, once the payment page is reached, the
attacker goes back and adds an item into the cart. In general,
there are several ways of breaking the multi-step operation of
Figure 5. The first approach is to use a different ordering (e.g.,
ha, d, c, e, fi). A second approach is to interleave other steps.
In this pattern, we focused on the latter approach in which we
repeat a step already included in the multi-step later in the test
case. For example, in the test case ha, c, d, c, e, fi in Figure 7.b
we repeat c after d. In this pattern, we repeat c also after e

and f , but not after a.

3) Breaking Server-Generated Propagation Chains

The goal of this attack pattern is to tamper with the data
flow of the web application. An example of test case is shown
in Figure 7.c. The first part of the test interacts with the
application and captures the value x of a server-generated
propagation chain. In the second part, we start another session
and interrupt the propagation chain by replacing the value of
par with x.

Since web applications contain many server-generated
propagation chains (e.g., all the item or message IDs), this
attack pattern may generate a very large number of test cases.
Therefore, we focus only on two types of propagation chains:
the ones containing unique values (i.e., that differ in all the
input traces and are therefore related to the session) and the
ones containing installation-specific values (i.e., values that are
constant only within the same installation).

The test case generation is the following. First, we select
the parameters belonging to the chain that appear inside an
HTTP request. These parameters are called injection points
and model the point in which an attacker can replace the
value generated by the server. For example, in Figure 7.c the
parameter par of the node d is an injection point. Second, we
select two traces from different user sessions that are visiting
the node of the injection point. The first is truncated at the
injection point and the second is appended to the first one.
With reference to Figure 7.c, the two parts are respectively at
the left- and right-hand side.

4) Waypoints Detour

Waypoints are operations that are executed always by all
the input traces such as payment, or providing shipping data.
When these operations happen only once per input trace, they
seem to indicate some sort of milestone in the execution of
the business process of the web application. In the waypoint
detour pattern, the attacker tries to skip these type of operations
by using one of two possible techniques. If the waypoint node
is not part of a propagation chain, we simply try to skip it.

6



Otherwise, we try to remove the part of the navigation graph
between two waypoints, reconstructing the propagation chains
by fetching the missing data values from another user session.

Figure 7.d shows an example of this pattern. On the left
side we skip the waypoint d, while on the right side we
cut the subgraph between a and d. In this second case, if
the URL of node d depends on a value that appears in the
segment between a and d, we prepare another user session by
selecting an input trace and interrupting it at d. The generation
of this part is similar to breaking propagation chains. The first
user session is then ha, b, a, c0, c00, di. Afterwards, we prepare
the second user session that skips the sequence between a

and d. In this example, there are two possibilities: skipping
hb, a, c0, c00i or hc0, c00i. Figure 7.e shows only the latter. In
this case the test case is the concatenation of ha, b, a, c0, c00, di
and ha, b, a, d, e, f, ei. For this case we also support the variant
in which the first user session is not interrupted at the node
d.

D. Test Case Execution

The test cases described in Section II-C are abstract and
still miss the details to be properly executed. For example,
the values of some parameters cannot be determined from
the model and need to be collected during the test case
execution. In addition, it is important that after each test the
application is reset to its initial state to avoid interferences
between consecutive executions. For example, a test may leave
a number of items in the shopping cart, thus affecting following
experiments. In general, it is often sufficient to delete the
cookies and empty the shopping cart at the end of each test.

The execution engine iterates over each node of the test
case, concretizes the POST/GET parameters, and submits
the HTTP request. The responses are parsed according to
the propagation chains in order to extract server-generated
parameters to be used in latter requests. If the execution engine
is not able to properly reconstruct a chain (e.g., because the
page that was supposed to generate its value returned an error)
the execution engine aborts the execution and reports that the
test was not executed; it reports executed otherwise.

E. Test Oracle

The approach we propose in this paper is completely
independent from the business logic of the web application.
Our technique can automatically identify behavioral patterns,
and then generate test cases to break those patterns in a number
of different ways. The system can also determine if a given
test was executed correctly, but this is as far as it is possible
to go with an application-agnostic approach. For example,
replacing the value of a security token in a payment workflow
would probably make the entire process fail. Unfortunately,
without any knowledge about the underlying business logic,
the test verdict could only say whether the pattern was applied
successfully, but it can not draw any conclusion about the
possible implications. Therefore, if we want our tool to be
able to report possible violations of the application logic, we
need to extract the sequence of events that occur during a test

case execution and compare them with the logic property that
we want to violate.

A simple way to express a logic property for shopping
carts could be the following: if an order is approved for a
user, then the user must have completed a payment for the
corresponding amount. In this formulation two events play a
central role: the fact that an order is placed, and the fact that
a user has paid a certain amount. Another important aspect of
this property is the time dependency between the two events.
Since propositional logic can only express truth regardless of
the time, in our approach, we model logic properties as Linear
Temporal Logic (LTL) formulas [30, 23]. LTL adds temporal
connectives like O (once in the past) to traditional logical
operators like ^ (and), and =) (implies). This enables us to
verify whether one event will eventually happen in the future
or it already happened in the past.

For example, the above logic property can be written in
LTL as follows:

ordplaced ^ onStore(S) =) O(paid(U, I)) (1)

where ordplaced, onStore(S), and paid(U, I) are respectively
the events order placed, operation performed on the store S,
and user U paid the price of item I . Now, the problem of
identifying a violation of the logic property is recast into the
problem of checking whether the LTL formula is satisfied or
not by a given test case.

In our approach, the Test Oracle is the component that
given an execution of a test case returns true if a certain
predefined logic property is violated, and false otherwise. The
oracle is composed of two parts: an events extractor and an
LTL formula checker. The extractor collects from the executed
test a partially ordered set of events (events can happen in
sequence or in parallel) grouped by user sessions. The second
part verifies whether all sequences satisfy the provided LTL
formula.

It is important to note that both the events and the LTL
formula depend on the type of applications under test and on
the type of vulnerabilities that we are interested to find. For
example, to find authentication bypass vulnerabilities it would
be interesting to observe events related to the user login and
to the access of private pages. However, since in this paper we
focus on the test of E-commerce applications, we are more
interested in monitoring the money transfer and the value of
the purchased items, as described in more details in the next
section.

III. EXPERIMENTS

We could use our tool to test online stores (e.g., Amazon).
However, our tests require to attempt malformed operations
and to complete a large number of checkout processes. This
would be both unethical, since the application can malfunction
as a result of our tests, and very expensive, since it requires
to buy at least one product for each test case. Therefore,
we opted to run our tests on seven well-known open source
applications available for offline testing, as reported in Table
I. The table also shows an estimation of their popularity,
measured with the search results obtained by performing a

7



Web App. No. of Installations
OpenCart 9,710,000
Magento 3,130,000
PrestaShop 650,000
CS-Cart 260,000
TomatoCart 119,000
osCommerce 80,500
AbanteCart 21,200
Total 13,970,700

TABLE I: Popularity index

number of googledorks [1]. Each Google query was built
by combining both the URL structure (e.g., the path of the
checkout endpoint) and some static HTML content extracted
from the web pages (e.g., “powered by. . . ” of the footer). As
such, the numbers reported in the table are only a lower bound
of the number of publicly-accessible installations available on
the Internet. This conservative measurement shows that these
seven applications are used by almost 14 million E-commerce
installations. As a comparison, the two applications tested by
Wang et al. [34] returned less than 40,000 hits using similar
Google dorks.

A. General Setup

We installed two instances of each web application (here-
inafter Store A and Store B). All installations except for
AbanteCart and PrestaShop were then configured to use both
the PayPal Express Checkout [3] and the PayPal Payments
Standard [4] methods. In total we prepared 12 configurations1.

All applications were configured in sandbox mode. In this
configuration, each application performs transactions by using
the PayPal sandbox payment gateway. These payments do not
involve real money as they are performed between the seller
and buyer testing accounts.

B. Testing Oracle

In their experiments, Wang et al. [35] used the following
shopping cart property:

“The store S changes the status of an item I to “paid” with
regard to a purchase being made by user U if and only if (i)
S owns I; (ii) a payment is guaranteed to be transferred from
an account of U to that of S in the CaaS; (iii) the payment
is for the purchase of I , and is valid for only one piece of I;
(iv) the amount of this payment is equal to the price of I .”

However, this property is not entirely verifiable in a black-
box setting. For instance, it is not possible to test the truth of
the predicate “S owns I” nor to check whether the due amount
has been transferred to the merchant’s account. Therefore, we
simplified the above invariant by removing the non-verifiable
clauses. The new property that can be used for automated
black-box testing becomes:

1When we did the experiments, AbanteCart and PrestaShop were providing,
respectively, only PayPal Payments Standard and PayPal Express Checkout.

When the store S confirms the user U that an order has
been placed, then in the past U paid S the amount equal to
the price of I and U agreed on purchasing I from S.

We modeled the logic property using the following events
extracted during each test case execution:

• ordplaced when the shop confirms that the order has
been placed;

• onStore(S) when an operation has been performed
on the store S;

• paid(U, I) when the user U authorizes the payment
gateway to pay the price of I;

• toStore(S) when the payment is meant for the store
S;

• ack(I), when the user acknowledges to buy I .

The logic property is then formulated as:

ordplaced ^ onStore(S) =)
O(paid(U, I) ^ toStore(S) ^

O(ack(U, I) ^ onStore(S))) (2)

C. Input Traces

To generate the input traces we created two user accounts,
U1 and U2, each controlling a PayPal buyer testing account.
For each web application we captured in total six HTTP
conversations, three for each store: one with U1 buying one
item, one with U2 buying another item, and one with U1

buying two different items. All the input traces satisfy the logic
property 2. These input traces were sufficient to stimulate the
main shopping cart functionalities, but a better training could
be used in the future to expose also more subtle features, or
for detecting different types of logic flaws.

D. Test Case Generation

Table II shows the test cases grouped by attack pattern.
The test case generation produced about 3100 test cases,
an average of 262 per application. Table II shows also the
test execution result. An execution failed when the test case
brought the application in a state in which it was impossible
to proceed (e.g., because of error pages in intermediate steps).
This is a common result, since by definition our tests stress the
application to expose some unexpected behavior. The number
of test cases violating the LTL formula is reported in Table III.
As mentioned before, there are events that are not visible to
the oracle. Therefore, a violation to the LTL formula does not
always correspond to a vulnerability. In fact, it is possible that
further checks performed in the back end of the application
would detect and block the attack. To distinguish logic vul-
nerabilities from other bugs (e.g., erroneously reporting to the
user a failed transaction as successful) we manually inspected
the balance sheets of the merchant, the list of orders, and their
status. Whenever the result was not confirmed by our manual

8



Test Case Generation Test Case Execution
Web App. Time hh:ss (a) (b) (c) (d), (e) Time hh:ss Exec. Not Exec. Total
AbanteCart Std ⌧ 00:01 9 51 21 152 04:51 74 159 233
Magento Exp 00:02 10 82 5 246 16:23 240 103 343

Std 00:02 14 62 7 303 14:50 210 176 386
OpenCart Exp 00:01 10 77 3 83 02:34 140 33 173

Std 00:01 15 38 22 60 02:08 71 64 135
osCommerce Exp ⌧ 00:01 4 13 6 142 03:22 117 48 165

Std 00:01 8 63 10 144 03:42 128 97 225
PrestaShop Exp ⌧ 00:01 12 22 3 100 02:42 85 52 137
TomatoCart Exp 00:02 9 68 10 215 04:54 238 64 302

Std 00:02 17 32 37 138 04:36 115 109 224
CS-Cart Exp 00:05 8 24 6 562 12:02 347 253 600

Std 00:02 16 54 15 137 05:29 127 95 222
Total 132 586 145 2282 1892 1253 3145

TABLE II: Statistics per application on the test case generation and test case execution phases. Columns (a), (b), (c), (d), and (e)
are the attack patterns in Figure 7 while columns Exec. and Not Exec. refer to the two possible outcomes of the test execution
engine.

No. Caused by
Web App. of Viols. Bugs Vulns.
AbanteCart Std 17 16 1
Magento Exp 65 65 -

Std 126 126 -
OpenCart Exp 58 46 12

Std 30 30 -
osCommerce Exp 42 22 20

Std 35 34 1
PrestaShop Exp - - -
TomatoCart Exp 90 65 25

Std 24 24 -
CS-Cart Exp 313 313 -

Std 109 108 1
Total 909 849 60

100% 93.4% 6.6%

TABLE III: Number of test cases violating Property 2 and the
root cause.

inspection, we classified it as a normal bug. The remaining
cases correspond instead to anomalous behaviors associated to
real software vulnerabilities, as explained in the next Section. It
is important to note that over 28.9% of the test cases generated
by our approach brought the application in a state that violated
the LTL formula, and 1 test out of 52 exposed a previously-
unknown logic vulnerability.

Test case generation does not require much resources, while
the execution phase can be quite time consuming (16h for
Magento). This is largely due to the lack of parallelization in
our experiments, and to the fact that the PayPal sandbox is
much slower than its live counterpart. The model inference
– omitted from Figure II – required an average of 9m per
application to build the navigation graphs that, in average,
contained 34 nodes and 48 edges.

IV. RESULTS

Table III reports the total number of violations of the
security property 2. In other words, by tampering with either
the workflow or the data flow according to our attack patterns,
our system was able to bring the web application in a faulty
state in 909 cases. All these cases corresponded to tests
that were executed until the final page in which the store
congratulates the customer for the successful purchase (that
caused the generation of the events ordplaced ^ onStore(S))
even though the paid amount was not correct. While these
violations are all the consequences of bugs in the application
code, not all of them can be exploited by an attacker.

This is an important point and a fundamental limitation
of black-box approaches. Our tool can only observe the
application state “from the outside”, and therefore it cannot
distinguish between a presentation bug (in which the informa-
tion displayed on the web pages are wrong but the internal state
of the application is correct) and a more serious vulnerability
(in which also the internal state is compromised).

To distinguish between the two types of bugs, we manually
inspected the state of the backend database: the result is
the distinction summarized in Table III between harmless
presentation bugs (93.4%) and real vulnerabilities (6.6%).
While these results indicate that the true positive rate of
our tool is 6.6%, also the remaining 93.4% of the violations
correspond to real bugs in the application that need to be fixed
by the developers. Once all the presentation issues have been
solved, the alarms raised by our tool would correspond only
to exploitable vulnerabilities.

A. Vulnerabilities

Table III shows that 60 of our test cases (1.9% of the total)
exposed a logic vulnerability in the target applications. We
discovered the following flaws:

• In osCommerce 2.3.1, CS-Cart 3.0.4, and Abante-
Cart 1.0.4 with PayPal Payments Standard a malicious

9



U
1

B PayPalAStore Store

add item I

checkout

add item I'

checkout

acc
B
, amt

I'
, inv

I'
, URL

B

acc
A
, amt

I'
, inv

I'
, URL

B
 

acc
A
, amt

I
, inv

I
, URL

A
 

authorize payment to acc
A

return to URL
B

URL
B

order placed in Store B
ord

placed

onStore(“Store B”)

paid(U
1
, I')

toStore(“Store A”)

Events

ack(U
1
, I),

onStore(“Store A”)

login

login

ack(U
1
, I'),

onStore(“Store B”)

Fig. 8: Shopping for free with osCommerce 2.3.1 and Aban-
teCart 1.0.4

customer can shop for free (exploitable)

• In OpenCart 1.5.3.1 and TomatoCart 1.1.7 with PayPal
Express Checkout a malicious customer can pay less
(exploitable)

• In TomatoCart 1.1.7 with PayPal Express Checkout a
malicious customer can shop for free (exploitable)

• OpenCart 1.5.3.1, TomatoCart 1.1.7, and osCom-
merce 2.3.1 with PayPal Express Checkout a customer
can pay an amount different from what she authorized
(not exploitable)

• TomatoCart 1.1.7 with PayPal Express Checkout a
customer pays another customer’s cart (not ex-
ploitable)

All the exploitable flaws have been already responsibly
disclosed. When the developers did not answer within two
weeks of our notification, we reported the vulnerabilities also
to the US Cert2. In the following we describe each class of
vulnerability we discovered in our experiments.

1) osCommerce, CS-Cart, and AbanteCart with PayPal Pay-
ments Standard - Shopping for Free

These flaws were discovered by tests that interrupted the
server-generated propagation chain transporting the PayPal
account of the merchant. An example is shown in Figure 8.
The left-hand side of the Figure shows the message sequence
chart while the right-hand side shows events grouped by user
session. Each user session begins with a login message. The
events show how the violation was detected by the oracle. At

2See http://www.kb.cert.org/vuls, IDs 459446, 207540, and 583564

U
1

PayPal

add item I

checkout

add item I'

Token

order placed in Store A

Events

Token

authorize payment to acc
A

Token, PayerID

Token, PayerID

order placed in Store A

Token, PayerID

login

login

Store AU
2

ack(U
1
, I),

onStore(“Store A”)

ord
placed

onStore(“Store A”)

paid(U
1
, I)

toStore(“Store A”)

ord
placed

onStore(“Store A”)

Fig. 9: Paying less with OpenCart 1.5.3.1 and Tomato-
Cart 1.1.7

the end of the execution, ordplaced ^ onStore(“Store B”) is
satisfied as all the events in it were observed. However, the
left-hand side of the Formula (1) is not satisfied because none
of the events in it were observed.

The manual inspection verified that (i) no payment was
made to the Store B, (ii) the status of the order in the back
office of Store B was “completed”, and (iii) the invoice was
paid. It is straightforward to turn the above test into a real
attack. Indeed, when redirected to PayPal, an attacker can
replace the seller PayPal account with another PayPal account
under her control. In this case, the attacker can pay herself for
an item she buys in an online shop.

2) OpenCart and TomatoCart with PayPal Express Checkout -
Pay Less

In OpenCart and TomatoCart with PayPal Express Check-
out an attacker can pay less than the value of the items.
The flaw has been detected by using the waypoints detour
pattern. The test case generator produced 11 test cases for
OpenCart and 11 for TomatoCart in which the user U2 skips
the nodes of the redirection to PayPal for the payment and
reconstructs the URL with values taken from the user session
of U2. A representative test case is shown in Figure 9. In
the second user session ordplaced ^ onStore(“Store A”) is
satisfied. However, the other clauses of the formula are not
satisfied because neither the user acknowledgment nor the
payment were observed.

The manual inspection found two distinct orders in the list
of orders, one for I and for I

0. Both orders were in the state
“paid” and ready for shipping. However, the balance sheet of
the merchant contains only the transaction for I , while nothing
is recorded for I 0.

10



U
1

PayPal

add item I

checkout

add item I'

Token

order placed in Store A

Events

Token

authorize payment to acc
A

Token, PayerID

Token, PayerID

login

login

Store AU
2

ack(U
1
, I),

onStore(“Store A”)

paid(U
1
, I)

toStore(“Store A”)

ord
placed

onStore(“Store A”)

Fig. 10: Shopping for free with TomatoCart 1.1.7

This test can be turned into an attack by first buying a cheap
item and intercepting the redirection URL from PayPal to the
store. Then the attacker can login again, add an expensive item
to the cart, and replay the URL captured before to complete
the transaction. Even worse, we verified that the attacker (or
any other user) can reuse the same TokenID and PayerID to
complete an arbitrary number of additional fake transactions.
This process is only bounded by the timeout set by PayPal on
the token.

3) TomatoCart with PayPal Express Checkout - Shopping for
Free

This problem has been identified by 11 different test cases
generated with the waypoint detour pattern. A representative
test case is shown in Figure 10. Figure 10 shows that in
the second user session ordplaced ^ onStore(“Store A”) is
satisfied. However, the other clauses of the formula are not
satisfied because neither user acknowledgment nor the payment
were observed.

The manual inspection verified that no payment for I and
for I

0 were done. However, the list of orders contained the
order for I

0 in a “paid” state and ready for shipping. This
test case can be turned into an attack as shown before with
the difference that the attacker ends the first user session after
receiving Token and PayerID from PayPal.

4) osCommerce, OpenCart and TomatoCart with PayPal Ex-
press Checkout - Pay Less

In osCommerce the test was generated by the waypoints
detour pattern, while in OpenCart and TomatoCart tests were
generated by breaking server-generated propagation chains.

In osCommerce, the test is similar to the one shown in Fig-
ure 10 while for OpenCart and TomatoCart, the tests are similar
to the one in Figure 8. When PayPal Express Checkout is

U
1

PayPal

add item I, sid

checkout, sid

add item I', sid'

order placed in Store A

Events

login

login

Store AU
2

checkout, sid

authorize payment to acc
A

payment ok

pay

pay

payment ok

ack(U
1
, I),

onStore(“Store A”)

paid(U
1
, I')

toStore(“Store A”)

ord
placed

onStore(“Store A”)

Fig. 11: Session fixation in TomatoCart 1.1.7

selected, the store and PayPal are exchanging the Token via
redirections. Here, the pattern interrupted the chain of Token
when the user is redirected to PayPal for the payment. In both
cases the oracle verified that the user U2 had a confirmation
and that paid(U2, I

0) ^ toStore(A) is satisfied. However, the
oracle could not verify O(ack(U2, I

0) ^ onStore(A)) because
it observed O(ack(U2, I) ^ onStore(A)).

A manual inspection confirmed that only the order for I

0

was in the list of the orders with status “paid”, while the order
for I was still “payment pending”. However, in the balance
sheet of the merchant, the payment for I

0 was done by U1

instead of U2. In this case, U1 authorized PayPal to pay for I
while her credit card was charged for I 0.

In order to turn this tests into a real attacks, the attacker
needs to intercept the redirection URL that is carried over
SSL/TLS channels. In addition, it must block the user-victim
from executing the redirection. This could require the attacker
to either break the SSL/TLS encryption layer or to mount
a SSL/TLS MITM (Man-In-The-Middle) attack. However, in
both cases the attacker will be able to capture also the payment
data of the victim enabling her to shop for free in any case.

5) TomatoCart with PayPal Express Checkout - Session Fixa-
tion

Our experiments discovered a session fixation vulnerability
in which U2 could impersonate another user. The test cases
were created by breaking the propagation chain of the param-
eter sid in two points. Figure 11 shows one of them. The
events of Figure 11 did not satisfy the formula because the
payment I

0 was of a different amount than the one the user
acknowledged for I .

The parameter sid carries the same value in the cookie and
breaking it causes a session fixation in which, in our case, U2

11



results logged in as U1. From that point on, U2 can access the
data of U1. As a consequence, U2 (now logged as U1) pays
the cart of U1. However, we could not find any exploitation
of this flaw. Supposing that the victim (i.e. U2) “clicks” on an
URL crafted by the attacker (U1), then the victim could notice
the fraud in three moments (i) when checking the summary
of order, (ii) when providing the shipping address (it shows
the attacker’s one), and (iii) during the payment because the
amount is different.

V. LIMITATIONS

Our approach uses attack patterns that tamper with the
observed data flow and workflow. However, it does not test
for other types of logic vulnerabilities such as unauthorized
access to resources. Moreover, we did not consider cases in
which the attacker can also play the role of a malicious store,
or the cases in which the attacker can intercept and tamper
with the messages between the application and the payment
service. We believe that our techniques could also be effective
at detecting other kinds of logic flaws, even though we have not
experimentally tested this hypothesis. This could be achieved
by adding input traces of privileged user (e.g., admin), by
adding other behavioral patterns, or by adding new attack
patterns.

Second, the test generation favors efficiency over coverage.
This means that only a few values are used for each test
category, to maximize the possibility to find bugs in a limited
amount of time. A more thorough exploration of the attack
space could be used to discover more vulnerabilities, however
this could require a considerable amount of execution time.
The focus of this paper is to show how an automated approach
can be used to find logic vulnerabilities in many real-word
applications, and not to analyze in depth a single application
(a scenario that would also require more input traces to better
explore the application’s logic).

Finally, we modeled logic properties in LTL. The use
of LTL enables us to verify events with time dependency.
However, LTL do not support algebra whose terms appear at
different moment of the execution. For example, our oracles
cannot verify whether the payment is the sum of the items
the user added into the cart at some point in the past. There
are works that extend LTL with constraints on integer num-
bers [10], and they could be used by our oracle for checking
more fine-grained properties.

VI. RELATED WORK

A large number of solutions have been proposed to detect
vulnerabilities in web applications. However, most of the
previous work focus on the automated detection of well-known
classes of vulnerabilities related to insufficient input validation,
such as Cross-Site Scripting (XSS) [26], Cross-Site Request
Forgery (CSRF) [2, 27] and SQL injection [22]. Since our
goal is to find logic flaws, we will not present these solutions
in this section.

a) Detection of Logic Vulnerabilities

When the source code of the application is available, tools
such as MiMoSA [9], Waler [21], and Swaddler [16] can be
used to discover logic vulnerabilities. MiMoSA and Waler
extract a model from the source code and then use a model
checker to detect a violation of invariants. Swaddler [16]
detects attacks when the software is at the deployment phase
of its life-cycle. It first learns the normal behavior of the ap-
plication and then monitors state variables at runtime looking
for deviations from the normal behavior.

When the source code is not available, the problem of
extracting a model becomes more difficult. Doupé et al. [19]
and Li and Xue [28] proposed two black-box testing tools. The
former presents a state-aware input fuzzer to detect XSS and
SQLi vulnerabilities. The tool infers a model that is used as an
oracle for choosing the next URL to crawl. Both our approach
and this technique infer models to improve the automatic
detection of vulnerabilities. However, we use a passive learning
technique tailored to generate test cases to detect logic flaws,
and not an active scanning to drive an input fuzzer. The
second work presents BLOCK, a tool that learns model and
invariants by observing HTTP conversations and then detects
authentication bypass attacks. As opposed to BLOCK our
approach does not aim at intercepting attacks, but at generating
security tests for detecting flaws. Both works could not be used
to find this class of vulnerabilities. The former work proposes
a stateful crawler with an input fuzzer that does not attempt to
violate the logic of the application. The latter focuses on the
detection of authentication bypass attacks by inferring session
variable invariants.

An approach similar to BLOCK is InteGuard [37]. Inte-
Guard aims at protecting multi-party web applications from
exploitation of vulnerabilities in the API integration. Inte-
Guard focuses mainly on the browser-relayed messages in
which data values are exchanged between the parties through
the web browser. In particular, InteGuard uses a passive
model inference technique based on data-flow analysis and
differential analysis to extract inter-services dataflow-related
invariants. The former is used to extract the flows of data
values while the latter is used to detect properties of data
flows such as transaction-specific or implementation-specific
values. Our approach uses similar techniques to extract these
type of invariants. However, in addition to that, it extracts
also invariants of the observable workflow of the application,
and takes into account both intra-service invariants, e.g., idem-
potent operations, and inter-service invariants, e.g., multi-step
operations.

Given the limited success of automated black-box tech-
niques, manual methodologies have been recently proposed.
Our work is mainly inspired by Wang et al. [34, 35], who
presented an analysis of Cashier as a Service (CaaS) based
web stores, and a large-scale analysis of web Single Sign-On
protocols. The former work describes a black-box methodol-
ogy that given a number of HTTP conversations, labels API
arguments and shows with which ones an attacker could play in
the attempt of violating security invariants. The latter refines
the previous one by (i) considering the role played by the
attacker during the protocol execution and (ii) adding semantic
and syntactic labels to protocol parameters. Both techniques

12



had a large impact due to the severe vulnerabilities the authors
were able to find in real-world applications. However, these
papers propose techniques and guidelines that need to be
manually applied by a security expert. Our work extends their
technique in four ways. First, it infers a model from set
of HTTP conversations. Second, it generalizes the notion of
propagation chain of a single trace into propagation chain of an
application model. Third, it infers observable characteristics of
the workflow of the business function. Finally, it automatically
generates and executes test cases using a number of attack
patterns.

AUTHSCAN [8] is an approach similar to our work. It
infers a model from implementations combining white-box and
black-box techniques. AUTHSCAN focuses on the detection
of flaws specific to authentication protocols (See Lowe et
al.[29] for a survey of authentication property) and it requires
a list of application-specific JavaScript function signatures in
order to infer an accurate model of the protocol participants.
On the contrary, our approach focuses on business-related
web application properties and uses an application-independent
model inference technique.

b) Model Inference

There is a large body of works addressing the problem
of inferring a model for testing purposes. Model inference is
divided in two categories: active learning and passive learning.
Active learning techniques interact with the application under
inference in order to explore its behavior whereas passive
learning techniques build a model from a set of observations.
Hossen et al. [25] proposed to apply the active learning
algorithm L* [5] to infer a deterministic finite automaton
and refining it with testing. Dury et al. [20] described an
approach based on passive learning of web-based business
applications. They used Parameterized Finite Automaton (PFA)
that enriches the classic notion of finite automaton [24] with
guards on transitions and parameters on states. PFA models
control flow and data flow of an application. Guards are
inferred using data mining algorithms like C4.5 [31]. Models
are then translated into the Promela language and fed to the
model checker SPIN [23] for verifying application-dependent
properties. However, in the first approach the authors proposed
a direction and say little on the type of flaws they aim
at detecting, while in the second the authors focus on the
inference part and do not cover the actual testing.

c) Model-Based Security Testing

New ideas have been proposed in order to use models for
the (semi-)automatic security testing of web applications when
models are available. For example, Armando et al. [7] proposed
to detect logic flaws and testing web-based security proto-
cols. The approach consists of using the SAT-based Model
Checker [6] to validate a formal specification against security
desiderata. If a violation occurs, it is executed against a real
implementation. Büchler et al. [13] proposed an approach that
assumes (i) a model is given (ii) and the model is secure. Then
they propose to mutate the model by injecting vulnerabilities
and to use a model checker for detecting violations. If a
problem is found, then they use the counterexample returned
by the model checker as an abstract test case for testing

implementations. Bodei et al. [11] proposed to model Service-
Oriented applications in CaSPiS (Calculus of Services with
Pipelines and Sessions), a process calculus with the notion of
session and pipelines [12], to perform a control flow analysis
for detecting misuse of the application. The authors tested their
technique on a known vulnerable version of the CyberOffice
shopping cart detecting the price-modification attack. However,
for all these works still remains the problem that a model of
the application is often not available in practice.

VII. CONCLUSIONS

In this paper we presented a new technique for the black-
box detection of logic flaws in web applications. Our ap-
proach uses a passive model inference technique that builds
a navigation graph from a set of network traces. We then
apply a number of heuristics to extract behavioral patterns that
are likely related to the underlying application logic. These
behaviors, together with a number of attack patterns, are used
for generating test cases.

We developed a prototype tool and tested seven E-
commerce applications. The prototype generated and executed
more than 3100 test cases, 900 of which violated the expected
behavior of the application. As a result, our tool detected ten
previously-unknown logic vulnerabilities in the applications
under test. Five of them allow an attacker to pay less or even
shop for free.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union Seventh Framework Programme under grant agreement
no. 257007 (project SysSec) and no. 257876 (project SPaCIoS
Secure Provision and Consumption in the Internet of Services).

REFERENCES

[1] “The google hacking database at hacking for charity.”
[Online]. Available: http://www.hackersforcharity.org/
ghdb/

[2] “Requestrodeo: Client side protection against session
riding,” in the OWASP Europe 2006 Conference, Report
CW448, Departement Computerwetenschappen, KU Leu-
ven, May 2006, 2006.

[3] “Paypal express checkout integration
guide,” August 2012. [Online]. Available:
https://cms.paypal.com/cms content/US/en US/files/
developer/PP ExpressCheckout IntegrationGuide.pdf

[4] “Paypal payments standard integration guide,”
June 2012. [Online]. Available: https://cms.
paypal.com/cms content/US/en US/files/developer/PP
WebsitePaymentsStandard IntegrationGuide.pdf

[5] D. Angluin, “Learning regular sets from queries and
counterexamples,” Inf. Comput., vol. 75, no. 2, Nov. 1987.

13



[6] A. Armando, R. Carbone, and L. Compagna, “Ltl model
checking for security protocols,” in Computer Security
Foundations Symposium, 2007. CSF ’07. 20th IEEE, July
2007, pp. 385–396.

[7] A. Armando, G. Pellegrino, R. Carbone, A. Merlo, and
D. Balzarotti, “From model-checking to automated test-
ing of security protocols: Bridging the gap,” in TAP, ser.
LNCS, A. D. Brucker and J. Julliand, Eds., vol. 7305.
Springer, 2012.

[8] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena,
J. Sun, Y. Liu, and J. S. Dong, “Authscan: Automatic ex-
traction of web authentication protocols from implemen-
tations,” in 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013, San Diego, California, USA,
February 24-27, 2013.

[9] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna,
“Multi-module vulnerability analysis of web-based appli-
cations,” in Proceedings of the 14th ACM conference on
Computer and communications security, ser. CCS ’07.
New York, NY, USA: ACM, 2007.

[10] M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella,
and M. Rossi, “Smt-based verification of ltl specifi-
cations with integer constraints and its application to
runtime checking of service substitutability,” CoRR, vol.
abs/1004.2873, 2010.

[11] C. Bodei, L. Brodo, and R. Bruni, “Static detection of
logic flaws in service-oriented applications,” in ARSPA-
WITS, ser. LNCS, P. Degano and L. Viganò, Eds., vol.
5511. Springer, 2009.

[12] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti, “Ses-
sions and pipelines for structured service programming,”
in FMOODS, ser. LNCS, G. Barthe and F. S. de Boer,
Eds., vol. 5051. Springer, 2008.

[13] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-
automatic security testing of web applications from a
secure model,” in SERE. IEEE, 2012.

[14] J. Caballero, P. Poosankam, C. Kreibich, and D. Song,
“Dispatcher: Enabling Active Botnet Infiltration using
Automatic Protocol Reverse-Engineering,” in Proceed-
ings of the 16th ACM Conference on Computer and
Communication Security, Chicago, IL, November 2009.

[15] P. M. Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda, “Prospex: Protocol specification extraction,”
in Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, ser. SP ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 110–125.
[Online]. Available: http://dx.doi.org/10.1109/SP.2009.14

[16] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler: An approach for the anomaly-based detection
of state violations in web applications,” in RAID, ser.
LNCS, C. Krügel, R. Lippmann, and A. Clark, Eds., vol.
4637. Springer, 2007.

[17] D. Crockford, “RFC4627: The application/json media
type for javascript object notation (json),” July 2006.

[Online]. Available: http://tools.ietf.org/html/rfc4627

[18] A. Doupé, B. Boe, C. Kruegel, and G. Vigna, “Fear the
ear: discovering and mitigating execution after redirect
vulnerabilities,” in Proceedings of the 18th ACM con-
ference on Computer and communications security, ser.
CCS ’11. New York, NY, USA: ACM, 2011.

[19] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “En-
emy of the State: A State-Aware Black-Box Vulnerability
Scanner,” in Proceedings of the 2012 USENIX Security
Symposium (USENIX 2012), Bellevue, WA, August 2012.

[20] A. Dury, H. H. Hallal, and A. Petrenko, “Inferring be-
havioural models from traces of business applications,” in
Proceedings of the 2009 IEEE International Conference
on Web Services, ser. ICWS ’09. Washington, DC, USA:
IEEE Computer Society, 2009.

[21] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vi-
gna, “Toward automated detection of logic vulnerabil-
ities in web applications,” in Proceedings of the 19th
USENIX conference on Security, ser. USENIX Secu-
rity’10. Berkeley, CA, USA: USENIX Association,
2010.

[22] W. G. Halfond, J. Viegas, and A. Orso, “A Classification
of SQL-Injection Attacks and Countermeasures,” in Pro-
ceedings of the IEEE International Symposium on Secure
Software Engineering, Arlington, VA, USA, March 2006.

[23] G. J. Holzmann, The SPIN Model Checker - primer and
reference manual. Addison-Wesley, 2004.

[24] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduc-
tion to Automata Theory, Languages, and Computation
(3rd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[25] K. Hossen, R. Groz, and J. Richier, “Security vulnera-
bilities detection using model inference for applications
and security protocols,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, march 2011.

[26] M. Johns, “Code injection vulnerabilities in web applica-
tions: Exemplified at cross-site scripting,” Ph.D. disser-
tation, 2011.

[27] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross
site request forgery attacks,” in SecureComm. IEEE,
2006.

[28] X. Li and Y. Xue, “Block: a black-box approach for
detection of state violation attacks towards web appli-
cations,” in Proceedings of the 27th Annual Computer
Security Applications Conference, ser. ACSAC ’11. New
York, NY, USA: ACM, 2011.

[29] G. Lowe, “A hierarchy of authentication specifications,”
in Computer Security Foundations Workshop, 1997. Pro-
ceedings., 10th, 1997, pp. 31–43.

[30] A. Pnueli, “The temporal logic of programs,” in FOCS.
IEEE Computer Society, 1977.

[31] J. R. Quinlan, C4.5: programs for machine learning. San

14



Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1993.

[32] The jQuery Foundation, “jQuery,” January 2013.
[Online]. Available: http://jquery.com/

[33] The OWASP Foundation, “OWASP Testing Guide,”
December 2008. [Online]. Available: https://www.owasp.
org/index.php/OWASP Testing Project

[34] R. Wang, S. Chen, and X. Wang, “Signing me onto
your accounts through facebook and google: a traffic-
guided security study of commercially deployed single-
sign-on web services.” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy. IEEE Computer
Society, 2012.

[35] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to
shop for free online – security analysis of cashier-as-a-
service based web stores,” in Proceedings of the 2011
IEEE Symposium on Security and Privacy, ser. SP ’11.
Washington, DC, USA: IEEE Computer Society, 2011.

[36] World Wide Web Consortium, “Simple Object Access
Protocol (SOAP) 1.2,” April 2007. [Online]. Available:
http://www.w3.org/TR/soap/

[37] L. Xing, Y. Chen, X. Wang, and S. Chen, “Integuard:
Toward automatic protection of third-party web service
integrations,” in 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013.

15


